4.5 Article

Flow Cytometry Analysis Reveals That Only a Subpopulation of Mouse Sperm Undergoes Hyperpolarization During Capacitation

Journal

BIOLOGY OF REPRODUCTION
Volume 92, Issue 5, Pages -

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1095/biolreprod.114.127266

Keywords

capacitation; ENac; flow cytometry; membrane potential; SLO3

Funding

  1. Eunice Kennedy Shriver National Institute of Child Health and Human Development grants National Institutes of Health [NIH] [RO1 HD38082, HD44044]
  2. NIH [RO1 HD069631]
  3. Direccion General de Asuntos del Personal Academico/Universidad Nacional Autonoma de Mexico [DGAPA-UNAM IN225406-3]
  4. Consejo Nacional de Ciencia y Tecnologia [39908-Q]
  5. Secretaria de Ciencia, Tecnologia e Innovacion del Distrito Federal, Mexico [039/2013]

Ask authors/readers for more resources

To gain fertilizing capacity, mammalian sperm should reside in the female tract for a period of time. The physiological changes that render the sperm able to fertilize are known as capacitation. Capacitation is associated with an increase in intracellular pH, an increase in intracellular calcium, and phosphorylation of different proteins. This process is also accompanied by the hyperpolarization of the sperm plasma membrane potential (Em). In the present work, we used flow cytometry to analyze changes in sperm Em during capacitation in individual cells. Our results indicate that a subpopulation of hyperpolarized mouse sperm can be clearly distinguished by sperm flow cytometry analysis. Using sperm bearing green fluorescent protein in their acrosomes, we found that this hyperpolarized subpopulation is composed of sperm with intact acrosomes. In addition, we show that the capacitation-associated hyperpolarization is blocked by high extracellular K+, by PKA inhibitors, and by SLO3 inhibitors in CD1 mouse sperm, and undetectable in Slo3 knockout mouse sperm. On the other hand, in sperm incubated in conditions that do not support capacitation, sperm membrane hyperpolarization can be induced by amiloride, high extracellular NaHCO3, and cAMP agonists. Altogether, our observations are consistent with a model in which sperm Em hyperpolarization is downstream of a cAMP-dependent pathway and is mediated by the activation of SLO3 K+ channels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available