4.8 Article

Coherent Charge Transfer Exciton Formation in Regioregular P3HT: A Quantum Dynamical Study

Journal

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
Volume 10, Issue 12, Pages 3326-3332

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.9b01105

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft (DFG) [BU-1032-2]

Ask authors/readers for more resources

The ultrafast formation of charge transfer excitons (CTXs) in regioregular poly(3-hexyl thiophene) (rrP3HT) domains is elucidated by electronic structure and quantum dynamical studies of an aggregate model system comprising five stacked quaterthiophene units. Using a multistate vibronic coupling Hamiltonian parametrized by TDDFT calculations for 13 electronic states of Frenkel and CTX type, along with 78 vibrational modes, quantum dynamical simulations are carried out using the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method. In line with time-resolved spectroscopic results [De Sio, A.; et al. Nat. Commun. 2016, 7, 13742], it is found that CTX formation occurs immediately upon photoexcitation, accompanied by sustained regular oscillations with a similar to 22 fs periodicity. These coherent features, whose presence may seem surprising in a high-dimensional aggregate or thin film material, can be traced back to a dominant vibronic signature of CC stretch-type high-frequency modes. These vibrational signatures are found to be enhanced due to a collective vibronic response that is prompted by the initial generation of a delocalized bright exciton and its subsequent relaxation, by internal conversion, to a polaronic local exciton ground state.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available