4.8 Article

Insights of Doping and the Photoluminescence Properties of Mn-Doped Perovskite Nanocrystals

Journal

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
Volume 10, Issue 9, Pages 2250-+

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.9b00182

Keywords

-

Funding

  1. CSIR, India
  2. IACS faculty grant

Ask authors/readers for more resources

Doping Mn2+ in semiconductor nanocrystals is widely known for its long-lifetime Mn d-d orange emission. While this had been extensively studied for chalcogenide nanostructures, recently this was also extended to perovskite nanocrystals. Being that CsPbCl3 has a wide bandgap, the exciton energy transfer was found to be more efficient, but the dopant-induced photoluminescence was also obtained for layered perovskites and quantum-confined CsPbBr3 nanocrystals. In recent years significant advances have been achieved in understanding the physical insights of doping following various approaches and optimizing the conditions for obtaining intense dopant emission. In addition, several new properties associated with these doped nanocrystals were also reported, and by modulating the compositions, the host bandgap and the dopant emission positions were also tuned. Keeping all of these developments in mind, this Perspective focuses on the insights of doping and the photoluminescence properties of Mn2+-doped perovskite nanocrystals. In addition, it also proposes possible future prospects of both synthesis and optical properties of these nanomaterials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available