4.4 Article

Adult-Onset Hypothyroidism Alters the Metaplastic Properties of Dentate Granule Cells by Decreasing Akt Phosphorylation

Journal

JOURNAL OF MOLECULAR NEUROSCIENCE
Volume 68, Issue 4, Pages 647-657

Publisher

HUMANA PRESS INC
DOI: 10.1007/s12031-019-01323-x

Keywords

Thyroid hormones; Plasticity; Dentate gyrus; Hippocampus; Protein kinase

Funding

  1. Research Foundation of Erciyes, University of Turkey [TYL-2015-6282, TDKA-2017-7696]

Ask authors/readers for more resources

The expression of homosynaptic long-term depression (LTD) governs the subsequent induction of long-term potentiation (LTP) at hippocampal synapses. This process, called metaplasticity, is associated with a transient increase in the levels of several kinases, such as extracellular signal-regulated protein kinases 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and Akt kinase. It has been increasingly realized that the chemical changes in the hippocampus caused by hypothyroidism may be the key underlying causes of the learning deficits, memory loss, and impaired LTP associated with this disease. However, the functional role of thyroid hormones in the plasticity of synaptic plasticity has only begun to be elucidated. To address this issue, we sought to determine whether the administration of 6-n-propyl-2-thiouracil (PTU) alters the relationship between priming and the induction of subsequent LTP and related signaling molecules. The activation of ERK1/2, JNK, and Akt was measured in the hippocampus at least 95min after priming onset. We found that priming stimulation at 5Hz for 3s negatively impacted the induction of LTP by subsequent tetanic stimulation in hypothyroid animals, as manifested by a more rapid decrease in the fEPSP slope and population spike amplitude. This phenomenon was accompanied by lower levels of phosphorylated Akt in the surgically removed hippocampus of the hypothyroid rats compared to the euthyroid rats. The metaplastic response and the expression of these proteins in the 1-Hz-primed hippocampus were not different between the two groups. These observations suggest that decreased PI3K/Akt signaling may be involved in the compromised metaplastic regulation of LTP observed in hypothyroidism, which may account for the learning difficulties/cognitive impairments associated with this condition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available