4.6 Article

A Hybridized ELM for Automatic Micro Calcification Detection in Mammogram Images Based on Multi-Scale Features

Journal

JOURNAL OF MEDICAL SYSTEMS
Volume 43, Issue 7, Pages -

Publisher

SPRINGER
DOI: 10.1007/s10916-019-1316-3

Keywords

Mammography; Micro calcification; Extreme Learning Machine; Feature selection; Classification; FOA

Ask authors/readers for more resources

Detection of masses and micro calcifications are a stimulating task for radiologists in digital mammogram images. Radiologists using Computer Aided Detection (CAD) frameworks to find the breast lesion. Micro calcification may be the early sign of breast cancer. There are different kinds of methods used to detect and recognize micro calcification from mammogram images. This paper presents an ELM (Extreme Learning Machine) algorithm for micro calcification detection in digital mammogram images. The interference of mammographic image is removed at the pre-processing stages. A multi-scale features are extracted by a feature generation model. The performance did not improve by all extracted feature, therefore feature selection is performed by nature-inspired optimization algorithm. At last, the hybridized ELM classifier taken the selected optimal features to classify malignant from benign micro calcifications. The proposed work is compared with various classifiers and it shown better performance in training time, sensitivity, specificity and accuracy. The existing approaches considered here are SVM (Support Vector Machine) and NB (Naive Bayes classifier). The proposed detection system provides 99.04% accuracy which is the better performance than the existing approaches. The optimal selection of feature vectors and the efficient classifier improves the performance of proposed system. Results illustrate the classification performance is better when compared with several other classification approaches.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available