4.6 Review

Review: recent progress in low-temperature proton-conducting ceramics

Journal

JOURNAL OF MATERIALS SCIENCE
Volume 54, Issue 13, Pages 9291-9312

Publisher

SPRINGER
DOI: 10.1007/s10853-019-03559-9

Keywords

-

Funding

  1. Department of Energy, Nuclear Energy Research Programs (DOE-NEUP) [DENE0008703]
  2. [CFA-17-12798]

Ask authors/readers for more resources

sProton-conducting ceramics (PCCs) are of considerable interest for use in energy conversion and storage applications, electrochemical sensors, and separation membranes. PCCs that combine performance, efficiency, stability, and an ability to operate at low temperatures are particularly attractive. This review summarizes the recent progress made in the development of low-temperature proton-conducting ceramics (LT-PCCs), which are defined as operating in the temperature range of 25-400 degrees C. The structure of these ceramic materials, the characteristics of proton transport mechanisms, and the potential applications for LT-PCCs will be summarized with an emphasis on protonic conduction occurring at interfaces. Three temperature zones are defined in the LT-PCC operating regime based on the predominant proton transfer mechanism occurring in each zone. The variation in material properties, such as crystal structure, conductivity, microstructure, fabrication methods required to achieve the requisite grain size distribution, along with typical strategies pursued to enhance the proton conduction, is addressed. Finally, a perspective regarding applications of these materials to low-temperature solid oxide fuel cells, hydrogen separation membranes, and emerging areas in the nuclear industry including off-gas capture and isotopic separations is presented.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available