4.7 Article

Facile synthesis of amino-functional large-size mesoporous silica sphere and its application for Pb2+ removal

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 378, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2019.05.057

Keywords

Pseudomorphic transformation; Amino-functional; Adsorption; Lead; Real wastewater

Funding

  1. National Natural Science Foundation of China [21307046, 51704137, U1402233]
  2. Natural Science Foundation of Yunnan Province [2015FB120]

Ask authors/readers for more resources

Amino-functional large-size mesoporous silica spheres (LMS-AP) were successfully synthesized through a one-step method with (3-aminopropyl) triethoxysilane (APTES) addition during the pseudomorphic transformation process. LMS-AP were characterized using thermogravimetry-differential thermal analysis, Nitrogen adsorption-desorption measurement, infrared spectroscopy, and X-ray photoelectron spectroscopy. The study found that -NH2 was grafted into LMS, and the LMS-AP had a better thermal stability than other samples. The Pb2+ removal properties of LMS-AP were investigated using the static and dynamic experiments in simulated and real wastewater solutions. The kinetic and equilibrium experiments indicated that the adsorption process of LMS-AP fitted the Langmuir adsorption model and the pseudo-second-order kinetics model (R-2 > 0.98), respectively. The maximum Q(e) (mg/g) was about 100 mg/g in the static adsorption condition. The adsorption mechanism of removal of Pb2+ was also investigated. In fix bed column experiments, LMS-AP exhibited excellent Pb2+ adsorption ability for simulated wastewater, with the maximum q(e) (mg/g) of 48.7 mg/g for particle size under 1-3 mm. Meanwhile in actual industrial wastewater treatment process, LMS-AP had a better Pb2+, Zn2+ and Cr (VI) removal efficiency of 80% and As (V) of 30-40% removal efficiency at initial pH 4, suggesting selective adsorption property for different heavy metal ions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available