4.6 Article

Time symmetry of resource constrained project scheduling with general temporal constraints and take-give resources

Journal

ANNALS OF OPERATIONS RESEARCH
Volume 248, Issue 1-2, Pages 209-237

Publisher

SPRINGER
DOI: 10.1007/s10479-016-2184-6

Keywords

Scheduling algorithms; Project scheduling; General temporal constraints; Backward scheduling; Additional resources

Funding

  1. Grant Agency of the Czech Republic [GACR P103-16-23509S]

Ask authors/readers for more resources

The paper studies a lacquer production scheduling problem formulated as a resource constrained project scheduling problem with general temporal constraints (i.e., positive and negative time-lags). This real-world scheduling problem requires so-called take-give resources that are needed from the beginning of an activity to the completion of another activity of the production process. Furthermore, we consider sequence dependent changeover times on take-give resources. We formulate this problem by mixed integer linear programming and we suggest a parallel heuristic to solve the problem. This heuristic exploits a time symmetry mapping which allows an easy construction of a schedule in the backward time orientation. In the second part of the paper, it is proven that the time symmetry mapping is bijective and involutive even for the problem with general temporal constraints, changeover times, and take-give resources. The motivation to use this mapping is to improve the performance of the heuristic and to simplify its implementation. Finally, the performance of the heuristic algorithm is evaluated on a set of lacquer production benchmarks requiring take-give resources and on standard benchmarks for the resource constrained project scheduling problem with general temporal constraints where we found new better solutions in 16 and 12 instances out of 90 for UBO500 and UBO1000 respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available