4.7 Article

Vibrational convection in a heterogeneous binary mixture. Part 1. Time-averaged equations

Journal

JOURNAL OF FLUID MECHANICS
Volume 870, Issue -, Pages 543-562

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2019.282

Keywords

multiphase flow

Ask authors/readers for more resources

High-frequency vibrations of a container filled with a fluid generate pulsation flows that however are barely visible with the naked eye, and induce the slow but large-amplitude averaged flows that are important for various practical applications. In this work we derive a theoretical model that gives the averaged description of the influence of uniform high-frequency vibrations on an isothermal mixture of two slowly miscible liquids. The miscible multiphase system is described within the framework of the phase-field approach. The full Cahn-Hillard-Navier-Stokes equations are split into the separate systems for the quasi-acoustic, pulsating and averaged flow fields, eliminating the need for the resolution of the short time scale pulsation motion and thus making the analysis of the long-term evolution much more efficient. The resultant averaged model includes the effects of concentration diffusion and barodiffusion, the dynamic interfacial stresses and the generation of the hydrodynamic flows by non-homogeneities of the concentration field (when they are combined with the effects of gravity and vibrations). The resultant model for the vibrational convection in a heterogeneous mixture of two fluids separated by diffusive boundaries could be used for the description of processes of mixing/de-mixing, solidification/melting, polymerisation, etc. in the presence of vibrations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available