4.2 Article

Synthetic sodalite doped with silver nanoparticles: Characterization and mercury (II) removal from aqueous solutions

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/10934529.2019.1611129

Keywords

Coal fly ash; synthetic sodalite; silver nanoparticles; mercury removal; nanocomposites; water treatment

Funding

  1. Nazarbayev University Research Council [SOE2015009]

Ask authors/readers for more resources

In this work, a novel silver nanoparticles-doped synthetic sodalitic composite was synthesized and characterized using advanced characterization methods, namely TEM-EDS, XRD, SEM, XRF, BET, zeta potential, and particle size analysis. The synthesized nanocomposite was used for the removal of Hg2+ from 10 ppm aqueous solutions of initial pH equal to 2. The results showed that the sodalitic nanocomposites removed up to 98.65% of Hg2+, which is similar to 16% and 70% higher than the removal achieved by sodalite and parent coal fly ash, respectively. The findings revealed that the Hg2+ removal mechanism is a multifaceted mechanism that predominantly involves adsorption, precipitation and Hg-Ag amalgamation. The study of the anions effect (Cl-, NO3-, C2H3O2-, and SO42-) indicated that the Hg2+ uptake is comparatively higher when Cl- anions co-exist with Hg2+ in the solution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available