4.7 Article

Degradation of methyl orange on Fe/Ag nanoparticles immobilized on polyacrylonitrile nanofibers using EDTA chelating agents

Journal

JOURNAL OF ENVIRONMENTAL MANAGEMENT
Volume 236, Issue -, Pages 481-489

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2019.02.023

Keywords

Polyacrylonitrile; Nanofibers; EDTA; Fe/Ag nanoparticles; Azo dyes

Funding

  1. Water Research Commission (WRC) of South Africa [K5/2386]

Ask authors/readers for more resources

Bimetallic nanoparticles are effective for the removal of organic pollutants from environmental water samples through catalytic degradation reactions. Hence, this work reports on the preparation of Fe/Ag bimetallic nanoparticles immobilized on electrospun polyacrylonitrile nanofibers (PAN NFs) pre-functionalized with EDTA and ethylenediamine (EDA) chelating agents. Characterization techniques included attenuated total reflectance coupled to Fourier transform infrared spectrometer (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The liquid chromatography coupled to a mass spectrometer (HPLC-MS) was used to investigate the degradation by-products. The impregnation of EDTA-EDA chelating agents imparted changes on the pristine PAN NFs as evidenced by increased nanofiber's average diameter and surface chemistry. The zero valent Fe and Ag NPs were successfully immobilized on PAN NFs and their catalytic activity was tested for the degradation of azo dyes. Results showed efficient decolourization of methyl orange dye molecules from synthetic water samples after four (4) cycles of reuse (e.g. > 96% removal efficiency). The hydrogenation of methyl orange was found to be the removal mechanism due to the presence of hydrogenated methyl orange by-products in the treated water samples. Therefore, the fabricated nanocomposites exhibit potential application for the remediation of textile wastewater.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available