4.5 Article

Excess androgen production in subcutaneous adipose tissue of women with polycystic ovarian syndrome is not related to insulin or LH

Journal

JOURNAL OF ENDOCRINOLOGY
Volume 241, Issue 1, Pages 99-109

Publisher

BIOSCIENTIFICA LTD
DOI: 10.1530/JOE-18-0674

Keywords

polycystic ovarian syndrome; adipose tissue; hyperandrogenism; CYP17A1; AKR1C3; hyperinsulinaemia

Funding

  1. Libyan Government offices

Ask authors/readers for more resources

The purpose of this study was to investigate androgen production and the role of insulin and LH in its regulation in subcutaneous adipose tissue (SAT) of women with polycystic ovarian syndrome (PCOS). Protein and mRNA expression of androgen synthesis enzymes (cytochrome P450 17A1 (CYP17A1) and aldo-keto reductase 1C3 (AKR1C3)) were measured in SAT biopsies from women with PCOS, diagnosed according to the Rotterdam criteria (n = 15) and healthy controls (n = 15). Cultured mature adipocytes (differentiated from SAT biopsies) were treated with insulin +/- phosphoinositol-3-kinase inhibitor (LY294002) or LH +/- insulin. CYP17A1 and AKR1C3 mRNA expression and testosterone concentrations were measured in treated and untreated adipocyte cultures. AKR1C3 mRNA was significantly (P < 0.001) greater in PCOS vs non-PCOS SAT, but CYP17A1 was not significantly different between the two groups. AKR1C3 and CYP17A1 protein expression was not significantly different in PCOS vs non-PCOS SAT. In untreated adipocyte cultures, CYP17A1, AKR1C3 and testosterone levels were significantly higher in the PCOS vs the non-PCOS groups. Addition of insulin increased AKR1C3 mRNA and testosterone levels, but not CYP17A1 mRNA in non-PCOS with no effect on PCOS adipocytes. The stimulatory effects of insulin were not inhibited by LY294002. Addition of LH increased CYP17A1, AKR1C3 and testosterone in non-PCOS adipocytes with no effect in PCOS adipocytes. In conclusion, SAT of women with PCOS produces excess androgen, which may contribute to PCOS-related hyperandrogenaemia. This SAT androgen excess is independent of obesity and is not directly stimulated by inulin or LH.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available