4.7 Article

Application of mechanical crushing combined with pyrolysis-enhanced flotation technology to recover graphite and LiCoO2 from spent lithium-ion batteries

Journal

JOURNAL OF CLEANER PRODUCTION
Volume 231, Issue -, Pages 1418-1427

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2019.04.279

Keywords

Recycling; Spent lithium-ion battery; Mechanical crushing; Pyrolysis-enhanced flotation

Funding

  1. Future Scientists Program of Double First Rate-of China University of Mining and Technology [2019WLKXJ008]
  2. Shanghai Tongji Gao Tingyao Environmental Science and Technology Development Foundation

Ask authors/readers for more resources

In this study, a novel process of mechanical crushing combined with a pyrolysis-enhanced flotation was developed to recover LiCoO2 and graphite from spent lithium-ion batteries, which lays the foundation for the subsequent metallurgical process. Pyrolysis technology was used to solve the problem of low flotation efficiency of electrode materials. The pyrolysis characteristics of the electrode materials were carefully analyzed, and based on the results, the effects of pyrolysis treatment on the surface micro-characteristics, surface element chemical states, and mineral phases of electrode materials were fully investigated to explore the pyrolysis flotation enhancement mechanism. Afterwards, flotation methods were utilized to separate LiCoO2 from graphite. Surface micro-characterization analysis showed that the residual organic binders and electrolytes were the main reason that resulted in a low flotation efficiency of electrode materials. The thermogravimetric analysis and pyrolysis products indicated that the organic binders and electrolyte can be removed at a pyrolysis temperature of 500 degrees C. X-ray powder diffractometer analysis demonstrated that the electrode particle mineral phases were not altered at a pyrolysis temperature of less than 550 degrees C. The optimum flotation behavior was presented at a pyrolysis temperature of 550 degrees C with heating rate of 10 degrees C/min and pyrolysis time of 15 min LiCoO2 grade is 94.72% with the recovery of 83.75% in this condition. Two stage pyrolysis-enhanced flotation processes can further upgrade the LiCoO2 grade to 98.00%. This research proposes a novel method to improve the flotation efficiency of electrode materials, and the relevant mechanism is explored, which provides an alternative recycling flowchart of spent lithium-ion batteries. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available