4.7 Article

Long noncoding RNA NEAT1 suppresses sorafenib sensitivity of hepatocellular carcinoma cells via regulating miR-335-c-Met

Journal

JOURNAL OF CELLULAR PHYSIOLOGY
Volume 234, Issue 9, Pages 14999-15009

Publisher

WILEY
DOI: 10.1002/jcp.27567

Keywords

liver cancer; long noncoding RNA; in vivo tumorigenesis; sorafenib resistance

Ask authors/readers for more resources

ObjectivesTo investigate the role of long noncoding RNA (lncRNA) nuclear-enriched abundant transcript 1 (NEAT1) in regulating sorafenib (Sora) sensitivity of hepatocellular carcinoma (HCC) cells and possible signaling pathways. MethodsHCC cell lines and tumor tissue were quantified for NEAT1 expression by quantitative polymerase chain reaction (qPCR). Following shRNA (short hairpin RNA) knockdown of NEAT1, cell viability, apoptosis, and related protein expression were measured after drug treatment. The downstream target of NEAT1, including miR-335 and c-Met was studied using a combination of luciferase binding assay, gene knockdown/overexpression, western blot analysis, and cell viability/apoptosis assay. Cancer cells with NEAT1 knockdown were transplanted onto nude mice for in vivo tumorigenesis assay. ResultsSilencing of NEAT1 in HCC cells facilitated Sora sensitivity by enhancing drug-induced apoptosis, and led to smaller tumor size on nude mice. Mechanistic study suggested that miR-335 was negatively regulated by NEAT1, and miR-335 further suppressed c-Met-Akt pathway, whose activation caused drug resistance of HCC cells. The knockdown of miR-335, or overexpression of c-Met, all remarkably abolished the proapoptotic effect of NEAT1 knockdown in HCC cells. ConclusionlncRNA NEAT1 mediates Sora resistance of HCC cells by suppressing miR-335 expression, and disinhibition on c-Met-Akt signaling pathway. Our results provide potency of NEAT1 as the biomarker for drug resistant HCC and possible treating targets.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available