4.7 Article

Glyphosate and Aminomethylphosphonic Acid Content in Glyphosate-Resistant Soybean Leaves, Stems, and Roots and Associated Phytotoxicity Following a Single Glyphosate-Based Herbicide Application

Journal

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
Volume 67, Issue 22, Pages 6133-6142

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jafc.9b00949

Keywords

glyphosate and AMPA toxicokinetics; glyphosate-based herbicides; glyphosate-resistant soybean; H2O2; stomatal conductance; biomass; effective quantum yield

Funding

  1. Natural Science and Engineering Research Council of Canada (NSERC)

Ask authors/readers for more resources

Glyphosate-based herbicide (GBH) applications were reported to induce physiological damages to glyphosate-resistant (GR) soybean, which were mainly attributed to aminomethylphosphonic acid (AMPA). In order to study glyphosate and AMPA dynamics in plants and associated phytotoxic effects, a greenhouse experiment was set where GR soybeans were exposed to GBH (0.7 to 4.5 kg glyphosate ha(-1)) and sampled over time (2, 7, 14, and 28 days after treatment (DAT)). Hydrogen peroxide content increased 2 DAT, while a decrease was observed for the effective quantum yield (2, 7, 14 DAT), stomatal conductance (2 DAT), and biomass (14 DAT). Glyphosate content was higher in leaves, followed by stems, and then roots. AMPA content tended to increase with time, especially in roots, and the amount of AMPA in roots was negatively correlated to mostly all phytotoxicity indicators. This finding is important since AMPA residues are measured in agricultural soils several months after GBH applications, which could impact productivity in GR crops.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available