4.7 Review

Protein Structure Determination in Living Cells

Journal

Publisher

MDPI
DOI: 10.3390/ijms20102442

Keywords

protein structure determination 1; non-uniform sampling 2; spectrum reconstruction 3; structural calculation 4; paramagnetic effects

Funding

  1. Japan Society for the Promotion of Science (JSPS) [JP15K06979, JP17K07312, JP26102538, JP25120003, JP16H00779, JP15H01645, JP16H00847]
  2. Japan Science and Technology Agency (JST) [JPMJCR13M3]

Ask authors/readers for more resources

To date, in-cell NMR has elucidated various aspects of protein behaviour by associating structures in physiological conditions. Meanwhile, current studies of this method mostly have deduced protein states in cells exclusively based on indirect' structural information from peak patterns and chemical shift changes but not direct' data explicitly including interatomic distances and angles. To fully understand the functions and physical properties of proteins inside cells, it is indispensable to obtain explicit structural data or determine three-dimensional (3D) structures of proteins in cells. Whilst the short lifetime of cells in a sample tube, low sample concentrations, and massive background signals make it difficult to observe NMR signals from proteins inside cells, several methodological advances help to overcome the problems. Paramagnetic effects have an outstanding potential for in-cell structural analysis. The combination of a limited amount of experimental in-cell data with software for ab initio protein structure prediction opens an avenue to visualise 3D protein structures inside cells. Conventional nuclear Overhauser effect spectroscopy (NOESY)-based structure determination is advantageous to elucidate the conformations of side-chain atoms of proteins as well as global structures. In this article, we review current progress for the structure analysis of proteins in living systems and discuss the feasibility of its future works.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available