4.7 Article

Box-Behnken design to optimize the synthesis of new crosslinked chitosan-glyoxal/TiO2 nanocomposite: Methyl orange adsorption and mechanism studies

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.ijbiomac.2019.02.025

Keywords

Chitosan; Glyoxal; TiO2 nanoparticles; Box-Behnken design; Methyl orange; Adsorption mechanism

Funding

  1. Chemisrty deparment, College of Science, University of Anbar, IRAQ

Ask authors/readers for more resources

A crosslinked chitosan-glyoxal/TiO2 nanocomposite (CCG/TNC) was synthesized by loading different ratios of TiO2 nanoparticles into polymeric matrix of crosslinked chitosan-glyoxal (CCG) to be a promising biosorbent for methyl orange (MO). Box-Behnken design (BBD) in response surface methodology (RSM) was applied to optimize various process parameters, viz., loading of TiO2 nanoparticles into CCG polymeric matrix (A: 0%-50%), adsorbent dose (B: 0.04-0.14 g/50 mL), solution pH (C: 4-10), and temperature (D: 30-50 degrees C). The highest MO removal efficiency of 75.9% was observed by simultaneous interactions between AB, AC, and BC. The optimum TiO2 loading, adsorbent dosage, solution pH, and temperature were (50% TiO2: 50% chitosan labeled as CCG/TNC-50), 0.09 g/50 mL, 4.0, and 40 degrees C. The adsorption of MO from aqueous solution by using CCG/TNC-50 in batch mode was evaluated. The kinetic results were well described by the pseudo-first order kinetic, and the equilibrium data were in agreement with Langmuir isotherm model with maximum adsorption capacity of 416.1 mg/g. The adsorption mechanism included electrostatic attractions, n-pi stacking interactions, dipole dipole hydrogen bonding interactions, and Yoshida H-bonding. (C) 2019 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available