4.7 Article

Surface, Subsurface, and Bulk Oxygen Vacancies Quantified by Decoupling and Deconvolution of the Defect Structure of Redox-Active Nanoceria

Journal

INORGANIC CHEMISTRY
Volume 58, Issue 9, Pages 6016-6027

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.9b00330

Keywords

-

Funding

  1. Australian Research Council through an Australian Government Research Training Program (RTP) Scholarship [DP170104130]

Ask authors/readers for more resources

Oxygen vacancy concentrations are critical to the redox/photocatalytic performance of nanoceria, but their direct analysis is problematic under controlled atmospheres but essentially impossible under aqueous conditions. The present work provides three novel approaches to analyze these data from XPS data for the three main morphologies of nanoceria synthesized under aqueous conditions and tested using in vacuo analytical conditions. First, the total oxygen vacancy concentrations are decoupled quantitatively into surface filled, subsurface-unfilled, and bulk values. Second, the relative surface areas are calculated for all exposed crystallographic planes. Third, XPS and redox performance data are deconvoluted according to the relative surface areas of these planes. Correlations based on two independent empirical results from volumetric surface XPS, combined with sequential deep XPS and independent EELS data, confirm that these approaches provide quantitative determinations Critically, the redox/photocatalytic performance depends not on the total oxygen vacancy concentration but on the concentration of the active sites on each plane in the form of subsurface-unfilled oxygen vacancies. This is verified by the pH-dependent performance, which can be increased significantly by exposing these vacancies to the surroundings. These approaches have significance to the design and engineering of semiconducting materials exposed to the environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available