4.7 Article

Revocable attribute-based encryption with decryption key exposure resistance and ciphertext delegation

Journal

INFORMATION SCIENCES
Volume 479, Issue -, Pages 116-134

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ins.2018.11.031

Keywords

Access control; Attribute-based encryption; Revocable storage; Ecryption key exposure

Funding

  1. National Natural Science Foundation of China [61872087]

Ask authors/readers for more resources

Attribute-based encryption (ABE) enables fine-grained access control over encrypted data. A practical and popular approach for handing revocation in ABE is to use the indirect revocation mechanism, in which a key generation centre (KGC) periodically broadcasts key update information for all data users over a public channel. Unfortunately, existing RABE schemes are vulnerable to decryption key exposure attack which has been well studied in the identity-based setting. In this paper, we introduce a new notion for RABE called re-randomizable piecewise key generation by allowing a data user to re-randmomize the combined secret key and the key update to obtain the decryption key, and the secret key is unrecoverable even both the decryption key and the key update are known by the attacker. We then propose a new primitive called re-randomizable attribute-based encryption (RRABE) that can achieve both re-randomizable piecewise key generation and cipher text delegation. We also refine the existing security model for RABE to capture decryption key exposure resistance and present a generic construction of RABE from RRABE. Finally, by applying our generic transformation, we give a concrete RABE scheme achieving decryption key exposure resistance and ciphertext delegation simultaneously. (C) 2018 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available