4.7 Article

Micro-Electrode-Dot-Array Digital Microfluidic Biochips: Technology, Design Automation, and Test Techniques

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TBCAS.2018.2886952

Keywords

Computer-aided design (CAD); digital microfluidics; error recovery; micro-electrode-dot-array

Funding

  1. U.S. National Science Foundation [CCF-1702596]
  2. Ministry of Science and Technology of Taiwan [MOST 105-2221-E-007-118-MY3, 104-2220-E-007-021]
  3. Technische Universitat Munchen Institute for Advanced Study through the German Excellence Initiative
  4. European Union [291763]
  5. Taiwan Ministry of Science and Technology [MOST 103-2221-E-009-191, 104-2218-E-009-007]

Ask authors/readers for more resources

Digital microfluidic biochips (DMFBs) are being increasingly used for DNA sequencing, point-of-care clinical diagnostics, and immunoassays. DMFBs based on a micro-electrode-dot-array (MEDA) architecture have recently been proposed, and fundamental droplet manipulations, e.g., droplet mixing and splitting, have also been experimentally demonstrated on MEDA biochips. There can be thousands of microelectrodes on a single MEDA biochip, and the fine-grained control of nanoliter volumes of biochemical samples and reagents is also enabled by this technology. MEDA biochips offer the benefits of real-time sensitivity, lower cost, easy system integration with CMOS modules, and full automation. This review paper first describes recent design tools for high-level synthesis and optimization of map bioassay protocols on a MEDA biochip. It then presents recent advances in scheduling of fluidic operations, placement of fluidic modules, droplet-size-aware routing, adaptive error recovery, sample preparation, and various testing techniques. With the help of these tools, biochip users can concentrate on the development of nanoscale bioassays, leaving details of chip optimization and implementation to software tools.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available