4.6 Article

New views on an old enzyme: allosteric regulation and evolution of archaeal pyruvate kinases

Journal

FEBS JOURNAL
Volume 286, Issue 13, Pages 2471-2489

Publisher

WILEY
DOI: 10.1111/febs.14837

Keywords

3-phosphoglycerate; allosteric regulation; archaea; evolution; pyruvate kinase

Ask authors/readers for more resources

Pyruvate kinases (PKs) synthesize ATP as the final step of glycolysis in the three domains of life. PKs from most bacteria and eukarya are allosteric enzymes that are activated by sugar phosphates; for example, the feed-forward regulator fructose-1,6-bisphosphate, or AMP as a sensor of energy charge. Archaea utilize unusual glycolytic pathways, but the allosteric properties of PKs from these species are largely unknown. Here, we present an analysis of 24 PKs from most archaeal clades with respect to allosteric properties, together with phylogenetic analyses constructed using a novel mode of rooting protein trees. We find that PKs from many Thermoproteales, an order of crenarchaeota, are allosterically activated by 3-phosphoglycerate (3PG). We also identify five conserved amino acids that form the binding pocket for 3PG. 3PG is generated via an irreversible reaction in the modified glycolytic pathway of these archaea and therefore functions as a feed-forward regulator. We also show that PKs from hyperthermophilic Methanococcales, an order of euryarchaeota, are activated by AMP. Phylogenetic analyses indicate that 3PG-activated PKs form an evolutionary lineage that is distinct from that of sugar-phosphate activated PKs, and that sugar phosphate-activated PKs originated as AMP-regulated PKs in hyperthermophilic Methanococcales. Since the phospho group of sugar phosphates and 3PG overlap in the allosteric site, our data indicate that the allostery in PKs first started from a progenitor phosphate-binding site that evolved in two spatially distinct directions: one direction generated the canonical site that responds to sugar phosphates and the other gave rise to the 3PG site present in Thermoproteales. Overall, our data suggest an intimate connection between the allosteric properties and evolution of PKs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available