4.7 Article

Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT

Journal

EUROPEAN RADIOLOGY
Volume 29, Issue 11, Pages 6163-6171

Publisher

SPRINGER
DOI: 10.1007/s00330-019-06170-3

Keywords

Liver; Neural networks (computer); X-ray computed tomography; Machine learning; Artificial intelligence

Funding

  1. Canon Medical Systems Co. Ltd.

Ask authors/readers for more resources

Objectives Deep learning reconstruction (DLR) is a new reconstruction method; it introduces deep convolutional neural networks into the reconstruction flow. This study was conducted in order to examine the clinical applicability of abdominal ultra-high-resolution CT (U-HRCT) exams reconstructed with a new DLR in comparison to hybrid and model-based iterative reconstruction (hybrid-IR, MBIR). Methods Our retrospective study included 46 patients seen between December 2017 and April 2018. A radiologist recorded the standard deviation of attenuation in the paraspinal muscle as the image noise and calculated the contrast-to-noise ratio (CNR) for the aorta, portal vein, and liver. The overall image quality was assessed by two other radiologists and graded on a 5-point confidence scale ranging from 1 (unacceptable) to 5 (excellent). The difference between CT images subjected to hybrid-IR, MBIR, and DLR was compared. Results The image noise was significantly lower and the CNR was significantly higher on DLR than hybrid-IR and MBIR images (p < 0.01). DLR images received the highest and MBIR images the lowest scores for overall image quality. Conclusions DLR improved the quality of abdominal U-HRCT images.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available