4.7 Article

Inhibition of microRNA-155 attenuates sympathetic neural remodeling following myocardial infarction via reducing M1 macrophage polarization and inflammatory responses in mice

Journal

EUROPEAN JOURNAL OF PHARMACOLOGY
Volume 851, Issue -, Pages 122-132

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ejphar.2019.02.001

Keywords

Myocardial infarction; MiR-155; Sympathetic neural remodeling; Macrophage; Nerve growth factor

Funding

  1. National Key Basic Research Development Program of China (The 973 Program) [2014CB542402]
  2. Natural Science Foundation of China [81670267]

Ask authors/readers for more resources

Inflammation plays an important role in sympathetic neural remodeling induced by myocardial infarction (MI). MiR-155 is a vital regulator of inflammatory responses, and macrophage-secreted miR-155 promotes cardiac fibrosis and hypertrophy. However, whether miR-155 influences MI-induced sympathetic neural remodeling is not clear. Therefore, we examined the role of miR-155 in MI-induced sympathetic neural remodeling and the related mechanisms in both an mouse model and in lipopolysaccharide (LPS)-stimulated bone marrow-derived macrophages (BMDMs). Our data showed that miR-155 expression was significantly enhanced in the myocardial tissues of MI mice compared to sham mice. Also, MI up-regulated the electrophysiological parameters, M1 macrophage polarization, inflammatory responses, and suppressor of cytokine signaling 1 (SOCS1) expression, which coincided with the increased expression of sympathetic nerve remodeling markers(nerve growth factor, tyrosine hydroxylase and growth-associated protein 43). Except for SOCS1, these proteins were attenuated by miR-155 antagomir. In vitro, LPS-stimulation promoted miR-155 expression in BMDMs. Consistent with the in vivo findings, miR-155 antagomir diminished the LPS-induced M1 macrophage polarization, nuclear factor (NF)-kappa B activation, and the expression of pro-inflammatory factors and nerve growth factor; but it increased the expression of SOCS1. Inversely, miR-155 agomir significantly potentiated LPS-induced pathophysiological effects in BMDMs. MiR-155 agomir-induced effects were reversed by the NF-kappa B inhibitor. Mechanistically, treatment with siRNA against SOCS1 augmented the aforementioned LPS-mediated activities, which were antagonized by the addition of miR-155 antagomir. In conclusion, miR-155 inhibition downregulated NGF expression via decreasing M1 macrophage polarization and inflammatory responses dependent on the SOCS1/NF-kappa B pathway, subsequently diminishing MI-induced sympathetic neural remodeling and ventricular arrhythmias (VAs).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available