4.7 Article

Recycling common materials: Effectiveness, optimal decisions, and coordination mechanisms

Journal

EUROPEAN JOURNAL OF OPERATIONAL RESEARCH
Volume 274, Issue 3, Pages 1055-1068

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ejor.2018.11.010

Keywords

OR in environment and climate change; Green supply chains; Life-cycle analysis; Socially optimal recycling; Recycling rebates

Ask authors/readers for more resources

A growing amount of municipal solid waste (MSW) is generated worldwide, and common materials (paper, plastic, metals, and glass), which account for more than half of MSW, exhibit low recovery rates. In this paper, we aim to investigate some key questions about recycling across three dimensions: greenhouse gas emissions, operational costs, and aggregate costs (social costs of emissions plus operational costs.) First, we build supply chain models for cradle-to-grave and cradle-to-cradle supply chains to derive an analytical condition for recycling effectiveness, and use US emissions and cost data to empirically validate that recycling is effective in reducing emissions for all the abovementioned materials. Furthermore, our analysis shows that recycling is effective for all materials, with the exception of glass, with respect to both operational and aggregate costs. Second, we study optimal recycling decisions in terms of collection and yield rates in a socially optimal case, as well as in scenarios in which recycling decisions are made by a local government, a product manufacturer, and an independent recycling firm. Unlike some of existing findings, we show that there are instances in which a product manufactures or an independent firm might be the best choice for organizing recycling operations. Finally, we discuss and analyze incentives that a social planner should offer to recyclers to bring their efforts closer to the socially optimal choice. We obtain a novel result, which shows that a deposit/refund scheme implemented by a social planner with a refund to local governments might lead to a socially optimal collection rate. (C) 2018 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available