4.7 Article

Fabrication of novel amine-functionalized magnetic silica nanoparticles for toxic metals: kinetic and isotherm modeling

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 27, Issue 22, Pages 27202-27210

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-019-05186-y

Keywords

Adsorption; Toxic metals; Nanosorbent; Modeling; Equilibrium; Kinetics

Ask authors/readers for more resources

In this research, an amine-functionalized magnetic silica nanosorbent was prepared using the co-precipitation technique, and this nanosorbent can be effortlessly detached using an external magnetic field. FTIR and SEM analyses identified that the nanosorbent holds extraordinary adsorption characteristics for toxic metals' (copper, cadmium, zinc, and nickel) removal. The adsorption-affecting parameters were optimized, and the thermodynamic studies assessed that the adsorption process seemed to be spontaneous, feasible, and exothermic. The pseudo-first-order and Freundlich models perfectly fit the kinetic and equilibrium data, respectively. Langmuir monolayer capacity of the nanosorbent was analyzed using nonlinear evaluation methods such as 419.9 mg/g for copper, 321.9 mg/g for nickel, 217.3 mg/g for cadmium, and 137.6 mg/g for zinc. The used adsorbent was simply rejuvenated using the 0.2 N HCl solution subsequently with intense agitation. The result of the present research confirms that the produced nanosorbent can be effectively utilized for industrial wastewater management.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available