4.8 Article

Environmental DNA Shaping a New Era of Ecotoxicological Research

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 53, Issue 10, Pages 5605-5612

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.8b06631

Keywords

-

Funding

  1. Fundamental Research Funds for the Central Universities

Ask authors/readers for more resources

Aquatic ecosystems, such as rivers and lakes, are exposed to multiple stressors from anthropogenic activity and changes in climate, which have resulted in a general decrease in biodiversity, alteration of community structures, and can ultimately result in reduction of resources provided by natural ecosystems. Adverse outcomes caused by pollutants to ecosystems are determined not only by toxic properties but also ecological contexts of ecosystems, including indigenous biodiversity and community composition. It is therefore important to identify key factors, such as diversity of species and traits that determine the vulnerability of structures and functions of ecosystems in response to toxic substances. Detection and quantification of biodiversity and its activities using environmental DNA (eDNA) is arguably one of the most important technical advances in ecology in recent years. A huge opportunity has appeared to allow more relevant approaches for assessments of risks posed to ecosystems by toxic substances. eDNA approaches provide effective and efficient tools to evaluate the effects of chemical pollutants on (1) the occurrences and population of wildlife, (2) communities, and (3) the function of ecosystem in the field. Here a conceptual framework of adverse outcome pathways to relate molecular initiating events to apical ecosystem-level responses is proposed to connecting laboratory-based prediction to observations under field conditions. Particularly, future research opportunities on effects on biodiversity, community structure, and ecosystem function by toxic substances will be discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available