4.8 Article

Experimental Validation of Hydrogen Atom Transfer Gibbs Free Energy as a Predictor of Nitroaromatic Reduction Rate Constants

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 53, Issue 10, Pages 5816-5827

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.9b00910

Keywords

-

Funding

  1. Strategic Environmental Research and Development Program (SERDP) [ER-2617]

Ask authors/readers for more resources

Nitroaromatic compounds (NACs) are a class of prevalent contaminants. Abiotic reduction is an important fate process that initiates NAC degradation in the environment. Many linear free energy relationship (LFER) models have been developed to predict NAC reduction rates. Almost all LFERs to date utilize experimental aqueous-phase one-electron reduction potential (E-H(1)) of NAC as a predictor, and thus, their utility is limited by the availability of E-H(1) data. A promising new approach that utilizes computed hydrogen atom transfer (HAT) Gibbs free energy instead of E-H(1) as a predictor was recently proposed. In this study, we evaluated the feasibility of HAT energy for predicting NAC reduction rate constants. Using dithionite-reduced quinones, we measured the second-order rate constants for the reduction of seven NACs by three hydroquinones of different protonation states. We computed the gas-phase energies for HAT and electron affinity (EA) of NACs and established HAT- and EA-based LFERs for six hydroquinone species. The results suggest that HAT energy is a reliable predictor of NAC reduction rate constants and is superior to EA. This is the first independent, experimental validation of HAT-based LFER, a new approach that enables rate prediction for a broad range of structurally diverse NACs based solely on molecular structures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available