4.8 Article

Identification of Photoinitiators, Including Novel Phosphine Oxides, and Their Transformation Products in Food Packaging Materials and Indoor Dust in Canada

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 53, Issue 8, Pages 4109-4118

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.9b00045

Keywords

-

Funding

  1. Natural Sciences and Engineering Research Council of Canada

Ask authors/readers for more resources

Although photopolymerization is generally considered a green technology, the contamination of foodstuffs by photoinitiators (PIs), an essential component of photopolymerization systems, has recently attracted notice. Despite this interest, little attention has been paid to PI contamination in the environment. To date, only one study, performed in China, has reported the occurrence of PIs in the environment. In the present study, the occurrence of 25 PI additives with discrete molecular structures was investigated in food packaging materials and indoor dust. The PIs studied here include benzophenones (BZPs), thioxanthones (TXs), amine co-initiators (ACIs), and novel phosphine oxides (POs). Twenty-four PIs were detected in food packaging materials. Total concentrations of PIs (Sigma PIs) ranged between 122 and 44 113 ng/g, with a geometric mean (GM) of 3375 ng/g. The photodegradation of PIs in food packaging materials was investigated for the first time, and the half-lives of PIs in these materials were found to range from 32 to 289 h. These 24 PIs were also detected in indoor dust samples (GM of Sigma PIs = 1483 ng/g). The relative abundances of different PIs were found to vary between the packaging materials and the indoor dust, which is attributed in part to the different stabilities of different PIs under simulated sunlight. Using standards synthesized in our lab, four TX transformation products (GM: 34.8 ng/g) were also detected in indoor dust. The concentrations of the transformation products were higher than the concentrations of the parent chemicals in indoor dust. Thus, further studies exploring human exposure to TXs should include these transformation products to avoid underestimation. This is the first report of PIs and relevant transformation products in the indoor environment in North America.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available