4.7 Article

Evaluating the net effect of sulfadimidine on nitrogen removal in an aquatic microcosm environment

Journal

ENVIRONMENTAL POLLUTION
Volume 248, Issue -, Pages 1010-1019

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2019.02.048

Keywords

Antibiotics; N2O; Nitrogen removal; Environmental sample; High-throughput sequencing

Funding

  1. National Natural Science Foundation of China [31772803, 31702290]
  2. Natural Science Foundation of Guangdong Province, China [2016A030311029]

Ask authors/readers for more resources

Antibiotics enter into aquatic pond sediments by wastewater and could make detrimental effects on microbial communities. In this study, we examined the effects of sulfadimidine on nitrogen removal when added to experimental pond sediments. We found that sulfadimidine increased the number of sulfadimidine resistant bacteria and significantly increased the abundance of sul2 at the end of the incubation time (ANOVA test at Tukey HSD, P < 0.05). In addition, sulfadimidine decreased the N2O reduction rate as well as the amount of nitrate reduction. Pearson correlation analysis revealed that the N2O reduction rate was significantly and negatively correlated with narG (r = 0.679, P < 0.05). In contrast, we found a significant positive correlation between the amount of nitrate reduction and the abundance of narG (r = 0.609, P < 0.05) and nirK (r = 0.611, P < 0.05). High-throughput sequencing demonstrated that Actinobacteria, Euryarchaeota, Gemmatimonadetes, Nitrospirae, Burkholderiaceae (a family of Proteobacteria), and Thermoanaerobaculaceae (a family of Firmicutes) decreased with sulfadimidine exposure. In sediments, Actinobacteria, Bacteroidetes, Cyanobacteria, Epsilonbacteraeota, Euryarchaeota, Firmicutes, Gemmatimonadetes, and Spirochaetesat may play key roles in nitrogen transformation. Overall, the study exhibited a net effect of antibiotic exposure regarding nitrogen removal in an aquatic microcosm environment through a combination of biochemical pathways and molecular pathways, and draws attention to controlling antibiotic pollution in aquatic ecosystems. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available