4.6 Article

Molecular characteristics of microbially mediated transformations of Synechococcus-derived dissolved organic matter as revealed by incubation experiments

Journal

ENVIRONMENTAL MICROBIOLOGY
Volume 21, Issue 7, Pages 2533-2543

Publisher

WILEY
DOI: 10.1111/1462-2920.14646

Keywords

-

Categories

Funding

  1. National Key Research Programs [2018YFA0605800, 2016YFA0601400]
  2. National Natural Science Foundation of China (NSFC) project [41776145, 41876150, 41861144018, 91751207, 41876083]
  3. Fundamental Research Funds for the Central Universities [20720170107]
  4. Natural Science Foundation of Fujian Province of China [2018J05072]

Ask authors/readers for more resources

In this study, we investigated the microbially mediated transformation of labile Synechococcus-derived DOM to RDOM using a 60-day experimental incubation system. Three phases of TOC degradation activity (I, II and III) were observed following the addition of Synechococcus-derived DOM. The phases were characterized by organic carbon consumption rates of 8.77, 1.26 and 0.16 mu mol L-1 day(-1), respectively. Excitation emission matrix analysis revealed the presence of three FDOM components including tyrosine-like, fulvic acid-like, and humic-like molecules. The three components also exhibited differing biological availabilities that could be considered as labile DOM (LDOM), semi-labile DOM (SLDOM) and RDOM, respectively. DOM molecular composition was also evaluated using FT-ICR MS. Based on differing biological turnover rates and normalized intensity values, a total of 1704 formulas were identified as candidate LDOM, SLDOM and RDOM molecules. Microbial transformation of LDOM to RDOM tended to proceed from high to low molecular weight, as well as from molecules with high to low double bond equivalent (DBE) values. Relatively higher aromaticity was observed in the formulas of RDOM molecules relative to those of LDOM molecules. FDOM components provide valuable proxy information to investigate variation in the bioavailability of DOM. These results suggest that coordinating fluorescence spectroscopy and FT-ICR MS of DOM, as conducted here, is an effective strategy to identify and characterize LDOM, SLDOM and RDOM molecules in incubation experiments emulating natural systems. The results described here provide greater insight into the metabolism of phytoplankton photosynthate by heterotrophic bacteria in marine environments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available