4.7 Article

Automatic characterization of rock mass discontinuities using 3D point clouds

Journal

ENGINEERING GEOLOGY
Volume 259, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.enggeo.2019.05.008

Keywords

Rock mass; Discontinuity; Tunnel; 3D point cloud; RMR; GSI

Funding

  1. Natural Science Foundation of China [NSFC 41877246]
  2. Science and Technology Plan Project of the Ministry of Transport of China [2013318J02120]
  3. Fundamental Research Funds for Central Universities

Ask authors/readers for more resources

Direct contact measurements for rock mass discontinuities are generally difficult to perform, time consuming, biased, and often dangerous. This paper presents an automatic characterization method for rock mass discontinuities that uses 3D point clouds, which can be obtained through non-contact measuring techniques such as photogrammetry and Light Detection and Ranging (LiDAR). In this method, five discontinuity parameters, namely, the orientation, trace, spacing, roughness, and aperture, are extracted automatically. The overall methodology is as follows: (1) orientation is determined by using an improved K-means clustering method; (2) trace segments are detected by using the Normal Tensor Voting Theory, and four post-processing techniques are employed to compute the trace length; (3) spacing is calculated by plotting virtual normal scan lines on the projected traces; (4) roughness is evaluated by the correlation between the Joint Roughness Coefficient (JRC) and the root mean square of the discontinuity surface profile; and (5) aperture is obtained by computing the average minimum width based on sub-pixel edge detection. The proposed method was applied to a drill-and blast rock tunnel, where the extracted discontinuity parameters were used to calculate the Rock Mass Rating (RMR) value and Geological Strength Index (GSI) of the rock mass. The application results showed that photogrammetry was more objective and efficient for acquiring rock mass discontinuity information, and that it could be used as a potential alternative to the traditional discontinuity mapping method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available