4.4 Article

The experimental study on the performance, combustion and emission characteristics of a diesel engine using diesel - biodiesel - diethyl ether blends

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/15567036.2019.1623950

Keywords

Biodiesel; diethyl ether blends; transesterification; engine performance; exhaust emissions; diesel engine

Ask authors/readers for more resources

Experimental analysis was conducted to study the influence of diethyl ether as an oxygenated additive in diesel-biodiesel blends on the performance and emissions of a diesel engine. Results showed that diethyl ether improved engine efficiency and reduced CO and HC emissions, but had little impact on NOX emissions.
In the present research work, the experimental analysis has been executed to investigate the influence of diethyl ether as an oxygenated additive to the diesel-biodiesel blend on the performance, combustion and emission characteristics of a diesel engine. The biodiesel (Frying oil methyl ester) was prepared by the transesterification process, and the biodiesel was added (40% by volume) to the diesel fuel to prepare the diesel-biodiesel blend (D60FME40). The diethyl ether was added to the diesel-biodiesel blends D60FM35 (diesel 60% + biodiesel 35% by volume) and D60FM30 (diesel 60% + biodiesel 30% by volume) with suitable volume proportions of 5% and 10% respectively to form diesel-biodiesel-diethyl ether blends ((D60FM35DEE5) & (D60FM30DEE10)). Initially, the test was conducted with diesel fuel to obtain the baseline reference reading. Then, the reading was compared with results taken from the engine using a diesel-biodiesel blend (D60FME40) and diethyl ether blends (D60FM35DEE5) & (D60FM30DEE10). The results reveal that the maximum brake thermal efficiency was obtained with diesel fuel and it was higher than the diesel-biodiesel blend and diethyl ether blends. The peak in-cylinder gas pressure and heat release rate in the premixed stage was less for the diesel-biodiesel blend, but it was increased with the addition of diethyl ether to the blend. The diesel-biodiesel-diethyl ether blends show less carbon monoxide and hydrocarbon emissions except for NOX emission as compared to the diesel and diesel-biodiesel blend, especially at the engine rated power.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available