4.8 Article

OTUB1 inhibits CNS autoimmunity by preventing IFN-γ-induced hyperactivation of astrocytes

Journal

EMBO JOURNAL
Volume 38, Issue 10, Pages -

Publisher

WILEY
DOI: 10.15252/embj.2018100947

Keywords

astrocyte; experimental autoimmune encephalomyelitis; multiple sclerosis; neuroinflammation; OTUB1; ubiquitination

Funding

  1. Deutsche Forschungsgemeinschaft (DFG) [WA 3895/1-1]

Ask authors/readers for more resources

Astrocytes are critical regulators of neuroinflammation in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Growing evidence indicates that ubiquitination of signaling molecules is an important cell-intrinsic mechanism governing astrocyte function during MS and EAE. Here, we identified an upregulation of the deubiquitinase OTU domain, ubiquitin aldehyde binding 1 (OTUB1) in astrocytes during MS and EAE. Mice with astrocyte-specific OTUB1 ablation developed more severe EAE due to increased leukocyte accumulation, proinflammatory gene transcription, and demyelination in the spinal cord as compared to control mice. OTUB1-deficient astrocytes were hyperactivated in response to IFN-gamma, a fingerprint cytokine of encephalitogenic T cells, and produced more proinflammatory cytokines and chemokines than control astrocytes. Mechanistically, OTUB1 inhibited IFN-gamma-induced Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling by K48 deubiquitination and stabilization of the JAK2 inhibitor suppressor of cytokine signaling 1 (SOCS1). Thus, astrocyte-specific OTUB1 is a critical inhibitor of neuroinflammation in CNS autoimmunity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available