4.6 Article

Synthesis of mesoporous defective graphene-nanosheets in a space-confined self-assembled nanoreactor: Highly efficient capacitive energy storage

Journal

ELECTROCHIMICA ACTA
Volume 305, Issue -, Pages 517-527

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2019.03.072

Keywords

2D materials; N-doped graphene; Space-confinement; Self-assembly; Supercapacitor

Funding

  1. National Natural Science Foundation of China [51772135]
  2. Ministry of Education of China [6141A02022516]
  3. China Postdoctoral Science Foundation [2018M633280, 2017M622902]

Ask authors/readers for more resources

Two-dimensional graphene-based materials are of great interest in electrochemical energy storage devices owing to their high theoretical specific capacitance; however, it is a big challenge to approach the theoretical limit. Here, we report a facile strategy for the selective production of N-doped graphene nanosheets (NGNS) in quasi-closed montmorillonite (MMT), which act as a nanoreactor and open only along the perimeter to enable the entrance of aniline (AN) monomer. As a proof of concept applications, as-synthesized NGNS are used as the electrode material for a symmetric supercapacitor (SSC). The NGNS supported on carbon paper (NGNS@CP) exhibits excellent capacitive performance in an aqueous neutral electrolyte (LiCl) by achieving a high capacitance of 480 and 472 F g(-1) at 1 A g(-1) for negative and positive electrodes, respectively. The NGNS@CP electrode also shown outstanding rate capabilities and cycling stabilities in positive and negative voltage windows by retaining the 98.07, and 99.44 % of the original value, respectively. Moreover, the assembled flexible symmetric supercapacitor (NGNS@CP//NGNS@CP) using LiCl/PVA hydro-gel electrolyte can operate at high voltage window of 0.0-2.0 V and achieved an ultra-high energy density of 82.72 Wh kg(-1) at a moderate power density of 425.68 W kg(-1) with remarkable cycling stability of 96.91 % over 10000 charge/discharge cycles. Furthermore, the NGNS@CP//NGNS@CP demonstrates excellent flexibility and one device can power the two light-emitting diodes brightly. The achieved energy density of the NGNS@CP//NGNS@CP is much superior to the previous graphene-based SSCs and suggests a new generation of ultra-fast symmetric supercapacitor as novel high-performance energy storage devices. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available