4.7 Article

Upper mantle seismic anisotropy as a constraint for mantle flow and continental dynamics of the North American plate

Journal

EARTH AND PLANETARY SCIENCE LETTERS
Volume 514, Issue -, Pages 143-155

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.epsl.2019.03.019

Keywords

continental dynamics; seismic anisotropy; North American plate

Funding

  1. NSF [EAR-1460479]

Ask authors/readers for more resources

The alignment of intrinsically anisotropic olivine crystals under convection is typically invoked as the cause of the bulk of seismic anisotropy inferred from shear-wave splitting (SWS). This provides a means of constraining the interplay between continental dynamics and the deep mantle, in particular for densely instrumented regions such as North America after USArray. There, a comparison of fast orientations from SWS with absolute plate motions (APM) suggests that anisotropy is mainly controlled by plate motions. However, large regional misfits and the limited realism of the APM model motivate us to further explore SWS based anisotropy. If SWS is estimated from olivine alignment in mantle circulation instead, plate-driven flow alone produces anisotropy that has large misfits with SWS. The addition of large-scale mantle density anomalies and lateral viscosity variations significantly improves models. Although a strong continental craton is essential, varying its geometry does, however, not improve the plate-scale misfit. Moreover, models based on higher resolution tomography degrade the fit, indicating issues with the flow model assumptions and/or a missing contributions to anisotropy. We thus compute a lithospheric complement to achieve a best-fit, joint representation of asthenospheric and frozen in lithospheric anisotropy. The complement shows coherent structure and regional correlation with independently imaged crustal and upper mantle anisotropy. Dense SWS measurements therefore provide information on depth-dependent anisotropy with implications for tectonics, but much remains to be understood about continental anisotropy and its origin. (C) 2019 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available