4.4 Article

Preparation of polymer-rare earth complexes based on Schiff-base-containing salicylic aldehyde groups attached to the polymer and their fluorescence emission properties

Journal

E-POLYMERS
Volume 19, Issue 1, Pages 15-22

Publisher

WALTER DE GRUYTER GMBH
DOI: 10.1515/epoly-2019-0003

Keywords

rare earth complex; Schiff base-containing preparation; fluorescence emission property

Funding

  1. National Natural Science Foundation of China [51663013]
  2. Science foundation of State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals

Ask authors/readers for more resources

In this study, the salicylaldehyde hydrazone was bonded onto the side chains of poly (styrene-co-butyl acrylate), firstly obtaining a series of novel Schiff base-functionalized polymers. and using the base-containing polymers as macromolecular ligands through further reaction with EuCl3/YbCl3 center dot 6H(2)O, a series of polymer-rare earth complexes based on Eu(III)/Yb(III) ion were successfully prepared. The structures of the schiff base-containing polymers and their corresponding complexes were characterized by means of infrared spectra and UV spectra. The thermal properties of the functionalized polymers and complexes were investigated by TGA, and the fluorescence properties of the complexes were also researched by fluorescence spectrum. The experimental results show that the complexes have fine thermal stability likely because of the bidentate chelate effect of base-containing polymer and the conjugative effect of salicylaldehyde hydrazone group on the side chain of poly (styrene-co-butyl acrylate). More important, the salicylaldehyde hydrazone group on the side chains of poly(styrene-co-butyl acrylate) can efficaciously sensitize the fluorescence emission of the center ion due to effective intramolecular energy-transfer. All the Eu(III)/Yb(III) complexes exhibit characteristic photoluminescence peaks in the visible region. The fluorescence excitation spectra of the complexes were obtained by monitoring the emission of Eu3+/Yb3+ ion at 497 nm, and the peak at 433 nm was found to be the optimal excitation peak. The concentration of salicylaldehyde hydrazone group was changed gradually with the variation of the molar ratio between the butyl acrylate and styrene (1:0.5; 1:1; 1:1.5; 1:2; 1:2.5), and the differences in their fluorescent intensity were followed, and the fluorescence intensity was very weak when the molar ratio of the butyl acrylate to styrene is equal to 1:2.5, while the fluorescence intensity reached a maximum value in the molar ratio of 1:1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available