4.5 Review

Sulfated Polysaccharides from Macroalgae for Bone Tissue Regeneration

Journal

CURRENT PHARMACEUTICAL DESIGN
Volume 25, Issue 11, Pages 1200-1209

Publisher

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/1381612825666190425161630

Keywords

Sulfated polysaccharides; fucoidan; carrageenan; ulvan; bone tissue engineering; macroalgae

Funding

  1. Yenepoya Research Center, Yenepoya (Deemed to be University) [YU/Seed grant/073-2018]

Ask authors/readers for more resources

Background: Utilization of macroalgae has gained much attention in the field of pharmaceuticals, nutraceuticals, food and bioenergy. Macroalgae has been widely consumed in Asian countries as food from ancient days and proved that it has potential bioactive compounds which are responsible for its nutritional properties. Macroalgae consists of a diverse range of bioactive compounds including proteins, lipids, pigments, polysaccharides, etc. Polysaccharides from macroalgae have been utilized in food industries as gelling agents and drug excipients in the pharmaceutical industries owing to their biocompatibility and gel forming properties. Exploration of macroalgae derived sulfated polysaccharides in biomedical applications is increasing recently. Methods: In the current review, we have provided information of three different sulfated polysaccharides such as carrageenan, fucoidan and ulvan and their isolation procedure (enzymatic precipitation, microwave assisted method, and enzymatic hydrolysis method), structural details, and their biomedical applications exclusively for bone tissue repair and regeneration. Results: From the scientific results on sulfated polysaccharides from macroalgae, we conclude that sulfated polysaccharides have exceptional properties in terms of hydrogel-forming ability, scaffold formation, and mimicking the extracellular matrix, increasing alkaline phosphatase activity, enhancement of biomineralization ability and stem cell differentiation for bone tissue regeneration. Conclusion: Overall, sulfated polysaccharides from macroalgae may be promising biomaterials in bone tissue repair and regeneration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available