4.7 Article

An experimental study on pullout and tensile behavior of ultra-high-performance concrete reinforced with various steel fibers

Journal

CONSTRUCTION AND BUILDING MATERIALS
Volume 206, Issue -, Pages 46-61

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2019.02.058

Keywords

Ultra-high-performance concrete; Steel fibers; Pullout; Tensile performance; Matrix damage; Correlation between pullout and tensile tests

Funding

  1. National Research Foundation of Korea (NRF) - Korea government (MSIT) [2017R1C1B2007589]

Ask authors/readers for more resources

This study investigates the effects of steel fiber type on the pullout and tensile performance of ultra-high-performance fiber-reinforced concrete (UHPFRC). For this, four different types of steel fibers, i.e., straight, twisted, hooked, and half-hooked, were used. In order to consider random fiber orientation in UHPFRC, various inclination angles, ranging from 0 degrees to 60 degrees, were considered for the pullout tests. Test results indicated that better pullout resistance was obtained in the deformed (twisted, hooked, and half-hooked) steel fibers embedded in ultra-high-performance concrete (UHPC) than that of the straight steel fiber as fiber breakage was prevented. The highest bond strengths of all steel fiber types were found when they were inclined 30 degrees or 45 degrees, while their slip capacities increased with increasing inclination angle. The hooked steel fiber exhibited the highest bond strengths at all inclination angles, while the twisted and half-hooked steel fibers exhibited the highest pullout energies at aligned and highly inclined (45 degrees and 60 degrees) conditions, respectively. In contrast to the pullout test results, the best tensile performance of UHPFRC was achieved by incorporating straight steel fibers, followed by the twisted, half-hooked, and hooked steel fibers. The poorer tensile performance of UHPCs reinforced with the deformed steel fibers was because of the severe matrix damage from excessive mechanical anchorage and fiber congestion, leading to insufficient matrix volume. Similarly, a relatively weak correlation between the fiber pullout and tensile behaviors of UHPFRC was observed. Therefore, a new pullout test method, which is able to consider the fiber random orientation and spacing, is required in order to improve the correlation. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available