4.6 Article

Deep 3D morphable model refinement via progressive growing of conditional Generative Adversarial Networks

Journal

COMPUTER VISION AND IMAGE UNDERSTANDING
Volume 185, Issue -, Pages 31-42

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.cviu.2019.05.002

Keywords

3DMM; GAN; 3D reconstruction; Face modeling

Ask authors/readers for more resources

3D face reconstruction from a single 2D image is a fundamental Computer Vision problem of extraordinary difficulty. Statistical modeling techniques, such as the 3D Morphable Model (3DMM), have been widely exploited because of their capability of reconstructing a plausible model grounding on the prior knowledge of the facial shape. However, most of these techniques derive an approximated and smooth reconstruction of the face, without accounting for fine-grained details. In this work, we propose an approach based on a Conditional Generative Adversarial Network (CGAN) for refining the coarse reconstruction provided by a 3DMM. The latter is represented as a three channels image, where the pixel intensities represent the depth, curvature and elevation values of the 3D vertices. The architecture is an encoder-decoder, which is trained progressively, starting from the lower-resolution layers; this technique allows a more stable training, which leads to the generation of high quality outputs even when high-resolution images are fed during the training. Experimental results show that our method is able to produce reconstructions with fine-grained realistic details and lower reconstruction errors with respect to the 3DMM. A cross-dataset evaluation also shows that the network retains good generalization capabilities. Finally, comparison with state-of-the-art solutions evidence competitive performance, with comparable or lower error in most of the cases, and a clear improvement in the quality of the generated models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available