4.7 Article

Size-dependent nonlinear analysis and damping responses of FG-CNTRC micro-plates

Journal

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2019.05.002

Keywords

Nonlinear static; Nonlinear dynamic; Size-dependent; Modified couple stress theory; Functionally graded carbon nanotube

Funding

  1. VLIR-UOS TEAM Project - Flemish Government, Belgium [VN2017TEA454A103]
  2. Academy of Finland, Finland [304122]
  3. Academy of Finland (AKA) [304122, 304122] Funding Source: Academy of Finland (AKA)

Ask authors/readers for more resources

This paper presents a nonlinear numerical model, which is based on the modified couple stress theory (MCST), and trigonometric shear deformation theory coupled with isogeometric analysis. The present approach captures the small scale effects on the geometrically nonlinear behaviors of functionally graded carbon nanotube reinforced composite (FG-CNTRC) micro-plate with four patterns distribution. The equations of motion are established based on a Galerkin weak form associated with von-Karman nonlinear strains. The MCST utilizes only one material length scale parameter to predict the size effect in FG-CNTRC micro-plate, for which its material properties are derived from an extended rule of mixture. The solutions of nonlinear static equation are obtained by using the Newton-Raphson technique and the Newmark time iteration procedure in association with Picard method is assigned to get responses of the nonlinear dynamic problems. In addition, the Rayleigh damping is applied to consider the influence of damping characteristic on the oscillation of FG-CNTRC micro-plates. Comparisons are performed to verify the proposed approach. Afterward, the numerical examples are used to show the effects of the distribution of carbon nanotubes (CNT), their volume fraction, the material length scale parameter and the boundary conditions on the nonlinear static and dynamic behaviors of FG-CNTRC micro-plates. (C) 2019 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available