4.5 Article

Deep learning based liver cancer detection using watershed transform and Gaussian mixture model techniques

Journal

COGNITIVE SYSTEMS RESEARCH
Volume 54, Issue -, Pages 165-175

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cogsys.2018.12.009

Keywords

Liver cancer; CT scan; Watershed transform; Gaussian mixture model; DNN model

Ask authors/readers for more resources

Objectives: Liver cancer is one of the leading cause of death in all over the world. Detecting the cancer tissue manually is a difficult task and time consuming. Hence, a computer-aided diagnosis (CAD) is used in decision making process for accurate detection for appropriate therapy. Therefore the main objective of this work is to detect the liver cancer accurately using automated method. Methods: In this work, we have proposed a new system called as watershed Gaussian based deep learning (WGDL) technique for effective delineate the cancer lesion in computed tomography (CT) images of the liver. A total of 225 images were used in this work to develop the proposed model. Initially, the liver was separated using marker controlled watershed segmentation process and finally the cancer affected lesion was segmented using the Gaussian mixture model (GMM) algorithm. After tumor segmentation, various texture features were extracted from the segmented region. These segmented features were fed to deep neural network (DNN) classifier for automated classification of three types of liver cancer i.e. hemangioma (HEM), hepatocellular carcinoma (HCC) and metastatic carcinoma (MET). Results: We have achieved a classification accuracy of 99.38%, Jaccard index of 98.18%, at 200 epochs using DNN classifier with a negligible validation loss of 0.062 during the classification process. Conclusions: Our developed system is ready to be tested with huge database and can aid the radiologist in detecting the liver cancer using CT images. (C) 2018 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available