4.5 Article

A cortical model with multi-layers to study visual attentional modulation of neurons at the synaptic level

Journal

COGNITIVE NEURODYNAMICS
Volume 13, Issue 6, Pages 579-599

Publisher

SPRINGER
DOI: 10.1007/s11571-019-09540-1

Keywords

Visual attention; AMPA and NMDA receptors; Stochastic binding process; Hodgkin-Huxley model

Categories

Funding

  1. National Natural Science Foundation of China [11232005, 11472104, 11702096, 11872180]
  2. Shanghai Pujiang Program [13PJ1402000]

Ask authors/readers for more resources

Visual attention is a selective process of visual information and improves perceptual performance by modulating activities of neurons in the visual system. It has been reported that attention increased firing rates of neurons, reduced their response variability and improved reliability of coding relevant stimuli. Recent neurophysiological studies demonstrated that attention also enhanced the synaptic efficacy between neurons mediated through NMDA and AMPA receptors. Majority of computational models of attention usually are based on firing rates, which cannot explain attentional modulations observed at the synaptic level. To understand mechanisms of attentional modulations at the synaptic level, we proposed a neural network consisting of three layers, corresponding to three different brain regions. Each layer has excitatory and inhibitory neurons. Each neuron was modeled by the Hodgkin-Huxley model. The connections between neurons were through excitatory AMPA and NMDA receptors, as well as inhibitory GABA(A) receptors. Since the binding process of neurotransmitters with receptors is stochastic in the synapse, it is hypothesized that attention could reduce the variation of the stochastic binding process and increase the fraction of bound receptors in the model. We investigated how attention modulated neurons' responses at the synaptic level on the basis of this hypothesis. Simulated results demonstrated that attention increased firing rates of neurons and reduced their response variability. The attention-induced effects were stronger in higher regions compared to those in lower regions, and stronger for inhibitory neurons than for excitatory neurons. In addition, AMPA receptor antagonist (CNQX) impaired attention-induced modulations on neurons' responses, while NMDA receptor antagonist (APV) did not. These results suggest that attention may modulate neuronal activity at the synaptic level.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available