4.7 Article

Prophylactic treatment of hyperbaric oxygen treatment mitigates inflammatory response via mitochondria transfer

Journal

CNS NEUROSCIENCE & THERAPEUTICS
Volume 25, Issue 8, Pages 815-823

Publisher

WILEY
DOI: 10.1111/cns.13124

Keywords

hyperbaric; mitochondria transfer; preconditioning; stroke; traumatic brain injury

Funding

  1. Center for Scientific Review [R01NS102395]

Ask authors/readers for more resources

Aims Hyperbaric oxygen therapy (HBOT) has been widely used as postinjury treatment; however, we investigate its ability to mitigate potential damage as a preconditioning option. Here, we tested the hypothesis that HBOT preconditioning mitigates cell death in primary rat neuronal cells (PRNCs) through the transfer of mitochondria from astrocytes. Methods Primary rat neuronal cells were subjected to a 90-minute HBOT treatment at 2.5 absolute atmospheres prior to either tumor necrosis factor-alpha (TNF-alpha) or lipopolysaccharide (LPS) injury to simulate the inflammation-plagued secondary cell death associated with stroke and traumatic brain injury (TBI). After incubation with TNF-alpha or LPS, the cell viability of each group was examined. Results There was a significant increase of cell viability accompanied by mitochondrial transfer in the injury groups that received HBOT preconditioning compared to the injury alone groups (44 +/- 5.2 vs 68 +/- 4.48, n = 20, P < 0.05). The transfer of mitochondria directly after HBOT treatment was visualized by capturing images in 5-minute intervals, which revealed that the robust transfer of mitochondria begins soon after HBOT and persisted throughout the treatment. Conclusion This study shows that HBOT preconditioning stands as a robust prophylactic treatment for sequestration of inflammation inherent in stroke and TBI, possibly facilitating the transfer of resilient mitochondria from astrocytes to inflammation-susceptible neuronal cells in mitigating cell death.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available