4.7 Article

Transient Introduction of miR-294 in the Heart Promotes Cardiomyocyte Cell Cycle Reentry After Injury

Journal

CIRCULATION RESEARCH
Volume 125, Issue 1, Pages 14-25

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCRESAHA.118.314223

Keywords

cell cycle; embryonic stem cells; microRNAs; myocardial infarction; myocardium

Funding

  1. National Institutes of Health [HL135177]
  2. American Heart Association Scientific Development grant [15SDG22680018, HL137850, 15SDG25550038, HL091983, HL126186, HL134608]

Ask authors/readers for more resources

Rationale: Embryonic heart is characterized of rapidly dividing cardiomyocytes required to build a working myocardium. Cardiomyocytes retain some proliferative capacity in the neonates but lose it in adulthood. Consequently, a number of signaling hubs including microRNAs are altered during cardiac development that adversely impacts regenerative potential of cardiac tissue. Embryonic stem cell cycle miRs are a class of microRNAs exclusively expressed during developmental stages; however, their effect on cardiomyocyte proliferation and heart function in adult myocardium has not been studied previously. Objective: To determine whether transient reintroduction of embryonic stem cell cycle miR-294 promotes cardiomyocyte cell cycle reentry enhancing cardiac repair after myocardial injury. Methods and Results: miR-294 is expressed in the heart during development, prenatal stages, lost in the neonate, and adult heart confirmed by qRT-PCR and in situ hybridization. Neonatal ventricular myocytes treated with miR-294 showed elevated expression of Ki67, p-histone H3, and Aurora B confirmed by immunocytochemistry compared with control cells. miR-294 enhanced oxidative phosphorylation and glycolysis in Neonatal ventricular myocytes measured by seahorse assay. Mechanistically, miR-294 represses Wee1 leading to increased activity of the cyclin B1/CDK1 complex confirmed by qRT-PCR and immunoblot analysis. Next, a doxycycline-inducible AAV9-miR-294 vector was delivered to mice for activating miR-294 in myocytes for 14 days continuously after myocardial infarction. miR-294-treated mice significantly improved left ventricular functions together with decreased infarct size and apoptosis 8 weeks after MI. Myocyte cell cycle reentry increased in miR-294 hearts analyzed by Ki67, pH3, and AurB (Aurora B kinase) expression parallel to increased small myocyte number in the heart. Isolated adult myocytes from miR-294 hearts showed increased 5-ethynyl-2 '-deoxyuridine+ cells and upregulation of cell cycle markers and miR-294 targets 8 weeks after MI. Conclusions: Ectopic transient expression of miR-294 recapitulates developmental signaling and phenotype in cardiomyocytes promoting cell cycle reentry that leads to augmented cardiac function in mice after myocardial infarction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available