4.6 Article

Phylogeny strongly drives seed dormancy and quality in a climatically buffered hotspot for plant endemism

Journal

ANNALS OF BOTANY
Volume 119, Issue 2, Pages 267-277

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/aob/mcw163

Keywords

Campo rupestre; Cerrado; community; ecophylogenetics; embryoless seeds; evolutionarily stable strategy; OCBIL; P-deficient soils; refugia; regeneration ecology; rupestrian grassland; seed viability

Categories

Funding

  1. CAPES
  2. FAPEMIG [APQ02317-14]

Ask authors/readers for more resources

Background and Aims Models of costs and benefits of dormancy (D) predict that the evolutionarily stable strategy in long-term stable environments is for non-dormancy (ND), but this prediction remains to be tested empirically. We reviewed seed traits of species in the climatically buffered, geologically stable and nutrient-impoverished campo rupestre grasslands in Brazil to test the hypothesis that ND is favoured over D. We examined the relative importance of life-history traits and phylogeny in driving the evolution of D and assessed seed viability at the community level. Methods Germination and viability data were retrieved from 67 publications and ND/D was determined for 168 species in 25 angiosperm families. We also obtained the percentage of embryoless, viable and dormant seeds for 74 species. Frequencies of species with dormant and non-dormant seeds were compared with global databases of dormancy distribution. Key Results The majority of campo rupestre taxa (62.5 %) had non-dormant seeds, and the ND/D ratio was the highest for any vegetation type on Earth. Dormancy was unrelated to other species life-history traits, suggesting that contemporary factors are poor predictors of D. We found a significant phylogenetic structure in the dormancy categorical trait. Dormancy diversity was highly skewed towards the root of the phylogenetic tree and there was a strong phylogenetic signal in the data, suggesting a major role of phylogeny in determining the evolution of D versus ND and seed viability. Quantitative analysis of the data revealed that at least half of the seeds produced by 46 % of the surveyed populations were embryoless and/or otherwise non-viable. Conclusions Our results support the view that long-term climatic and geological stability favour ND. Seed viability data show that campo rupestre species have a markedly low investment in regeneration from seeds, highlighting the need for specific in situ and ex situ conservation strategies to avoid loss of biodiversity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available