4.7 Review

Human health risk associated with the management of phosphorus in freshwaters using lanthanum and aluminium

Journal

CHEMOSPHERE
Volume 220, Issue -, Pages 286-299

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2018.12.093

Keywords

Lanthanum; Aluminium; Geo-engineering; Human health; Ecotoxicity

Funding

  1. R&D Veterinary Sciences Pty Ltd, Karana Downs, Australia

Ask authors/readers for more resources

The use of geo-engineering materials to manage phosphorus in lakes has increased in recent years with aluminium and lanthanum based materials being most commonly applied. Hence the potential impact of the use of these compounds on human health is receiving growing interest. This review seeks to understand, evaluate and compare potential unintended consequences on human health and ecotoxicological risks associated with the use of lanthanum- and aluminium-based materials to modify chemical and ecological conditions in water bodies. In addition to their therapeutic use for the reduction of intestinal phosphate absorption in patients with impaired renal function, the phosphate binding capacity of aluminium and lanthanum also led to the development of materials used for water treatment. Although lanthanum and aluminium share physicochemical similarities and have many common applications, their uptake and kinetics within the human body and living organisms importantly differ from each other which is reflected in a different toxicity profile. Whilst a causal role in the development of neurological pathologies, skeletal lesions, hematopoietic disorders and respiratory effects has unequivocally been demonstrated with increased exposure to aluminium, studies until now have failed to find such a clear association after exposure to lanthanum although caution is warranted. Our review indicates that lanthanum and aluminium have a distinctly different profile with respect to their potential effects on human health. Regular monitoring of both aluminium and lanthanum concentrations in lanthanum-/aluminium-treated water by the responsible authorities is recommended to avoid acute accidental or chronic low level accumulation. Crown Copyright (C) 2018 Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available