4.6 Article

Advanced Polymer Designs for Direct-Ink-Write 3D Printing

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 25, Issue 46, Pages 10768-10781

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201900975

Keywords

3D printing; direct ink writing; polymers; rheology; supramolecular chemistry

Ask authors/readers for more resources

The rapid development of additive manufacturing techniques, also known as three-dimensional (3D) printing, is driving innovations in polymer chemistry, materials science, and engineering. Among current 3D printing techniques, direct ink writing (DIW) employs viscoelastic materials as inks, which are capable of constructing sophisticated 3D architectures at ambient conditions. In this perspective, polymer designs that meet the rheological requirements for direct ink writing are outlined and successful examples are summarized, which include the development of polymer micelles, co-assembled hydrogels, supramolecularly cross-linked systems, polymer liquids with microcrystalline domains, and hydrogels with dynamic covalent cross-links. Furthermore, advanced polymer designs that reinforce the mechanical properties of these 3D printing materials, as well as the integration of functional moieties to these materials are discussed to inspire new polymer designs for direct ink writing and broadly 3D printing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available