4.8 Article

Light-Induced Self-Assembly of Cubic CsPbBr3 Perovskite Nanocrystals into Nanowires

Journal

CHEMISTRY OF MATERIALS
Volume 31, Issue 17, Pages 6642-6649

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.9b00680

Keywords

-

Funding

  1. King Abdullah University of Science and Technology (KAUST)
  2. National Science Foundation of China (NSFC) [21771029, 21573034]

Ask authors/readers for more resources

The rapid development of halide perovskite synthesis offers the opportunity to fabricate high-quality perovskite nanocrystals (NCs), whose structural uniformity can lead to assembled supra-structures with improved device performance and novel collective properties. Light is known to significantly affect the structure and properties of halide perovskites and plays a crucial role in the growth and assembly of their crystals. Nevertheless, the light-induced growth mechanisms of perovskite NCs are not yet clearly understood. In this work, we performed a systematic study of the visible-light-induced template-free synthesis of CsPbBr3 nanowires (NWs) generated through self-assembly of cubic (in phase and close to cubic morphology) NCs. Using atomic-resolution electron microscopy, we visualized the cubic-to-orthorhombic phase transition in NCs and the interface between coalesced NCs. Remarkably, the images of the interface revealed the coexistence of CsBr and PbBr2 surface terminations in halide perovskites. Our results shed light on the mechanism underlying the observed anisotropic assembly of halide perovskites and elucidate the vital role of light illumination during this process. More importantly, as an elegant and promising green-chemistry approach, light-induced self-assembly represents a rational method for designing perovskites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available