4.7 Article

Utilization of ferric groundwater treatment residuals for inorganic-organic hybrid biosorbent preparation and its use for vanadium removal

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 361, Issue -, Pages 680-689

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2018.12.122

Keywords

Groundwater treatment residual; Recover; Iron impregnation; Vanadium removal

Funding

  1. European Union
  2. Regional Council of Lapland

Ask authors/readers for more resources

Ferric groundwater treatment residual (Fe-GWTR) collected from a Finnish groundwater treatment plant were recovered for use after acid dissolution as an iron source for an inorganic-organic hybrid material. Acid dissolution, performed with 1 mol/L hydrochloric acid and mixing for one hour at room temperature, was determined as the optimal condition based on a high Fe concentration and low concentration of interfering elements. Peat modification was conducted at pH values of 3, 5 and 7 with both a commercial iron reagent (FeCl3 center dot 6H(2)O) and Fe-GWTR solution for comparison. A modification pH of 3 resulted in the highest vanadium removal efficiency for both iron sources. The isoelectric point (pHIEP) of Fe-GWTR-modified peat at pH 3 (Fe-GWTR-P3) was found to be 5.0. After modification, it was confirmed that BET surface area and pore volume of the peat were enlarged. Maximum capacity was found to be around 16 mg/g with a 24-hour contact time at pH 4 and a good fit was achieved with the Redlich-Peterson isotherm model. The kinetic data followed the Elovich equation, which refers to the chemisorption mechanism. According to intra-particle diffusion and Boyd models, the adsorption was a two-step diffusion process, with intra-particle diffusion being the slowest step. This study demonstrates that Fe-GWTR could safely be used as an iron source for biomass modification, and Fe-GWTR-P3 could be used as a low-cost and effective sorbent for vanadium-containing wastewater treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available