4.7 Article

Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 362, Issue -, Pages 548-560

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2019.01.028

Keywords

Wound dressing; Injectable hydrogel; Electroactive hydrogel; Antibacterial activity; Antioxidant property; Conducting polymers

Funding

  1. National Natural Science Foundation of China [51673155]
  2. State Key Laboratory for Mechanical Behavior of Materials [20182002]
  3. Fundamental Research Funds for the Central Universities
  4. World-Class Universities (Disciplines) and the Characteristic Development Guidance Funds for the Central Universities

Ask authors/readers for more resources

Besides preventing wound infection, novel wound dressing materials are highly expected to exhibit the extraordinary wound repair and skin regeneration advantage. Herein, we designed a kind of multi-functional injectable hydrogel dressing, integrating the conductivity, desirable antioxidant ability and antibacterial property to meet increasing requirements of skin damage. By mixing the biocompatible polymer N-carboxyethyl chitosan (CEC) and oxidized hyaluronic acid-graft-aniline tetramer (OHA-AT) polymer under physiological conditions, the conductive anti-oxidant hydrogels OHA-AT/CEC were fabricated. The hydrogels exhibited stable rheological property, high swelling ratio, suitable gelation time, good in vitro biodegradation property, electroactive property and free radical scavenging capacity. With the antibiotic amoxicillin addition, the hydrogel showed good antibacterial property to effectively prevent the wound infection. In vivo experiments indicated that hydrogel with AT addition (OHA-AT/CEC hydrogels) significantly accelerated wound healing rate with higher granulation tissue thickness, collagen disposition and more angiogenesis in a full-thickness skin defect model. In one word, the present approach can shed new light on designing of electroactive injectable hydrogels with promising applications in wound dressing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available